Nulon R45 Ultra Cool #### **Nulon Products** Chemwatch: 25708 Version No: 7.1.1.1 Safety Data Sheet according to WHS and ADG requirements # Chemwatch Hazard Alert Code: 1 Issue Date: 07/02/2014 Print Date: 08/04/2015 Initial Date: Not Available L.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Nulon R45 Ultra Cool | |-------------------------------|----------------------| | Synonyms | Not Available | | Other means of identification | Not Available | # Relevant identified uses of the substance or mixture and uses advised against | Relevant identified | Use according to manufacturer's directions. | |---------------------|---| | uses | Radiator coolant. | #### Details of the manufacturer/importer | Registered company name | Nulon Products | |-------------------------|--| | Address | 17 Yulong Close Moorebank 2170 NSW Australia | | Telephone | +61 2 9608 7800 | | Fax | +61 2 9601 4700 | | Website | Not Available | | Email | msds@nulon.com.au | # **Emergency telephone number** | Association / Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | Not Available | | Other emergency telephone numbers | Not Available | #### **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code. #### CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|--------------------------| | Flammability | 0 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 1 | | 1 = Low | | Reactivity | 1 | | 2 = Moderate
3 = High | | Chronic | 0 | | 4 = Fxtreme | | Poisons Schedule | Not Applicable | |--------------------|----------------| | GHS Classification | Not Applicable | #### Label elements | GHS label elements | Not Applicable | |--------------------|----------------| | | | | SIGNAL WORD | NOT APPLICABLE | Precautionary statement(s) Prevention Precautionary statement(s) Response Precautionary statement(s) Storage Precautionary statement(s) Disposal #### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|---| | Not Available | <40 | corrosion inhibitors determined not to be hazardous [Mfr] | | 7732-18-5 | >60 | water | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. # **SECTION 4 FIRST AID MEASURES** #### **Description of first aid measures** | | If this product comes in contact with the eyes: ▶ Wash out immediately with fresh running water. | |--------------|---| | Eye Contact | Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. | | | ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention. | | | ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | If skin contact occurs: | | | Immediately remove all contaminated clothing, including footwear. | | Skin Contact | ▶ Flush skin and hair with running water (and soap if available). | | | ► Seek medical attention in event of irritation. | | labatatan | ► If fumes, aerosols or combustion products are inhaled remove from contaminated area. | | Inhalation | ► Other measures are usually unnecessary. | | 1 | ► Immediately give a glass of water. | | Ingestion | ▶ First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** | Water spray or fog. | |--| | Alcohol stable foam. | | Dry chemical powder. | | Carbon dioxide. | # Special hazards arising from the substrate or mixture | Fire | Incompatibility | |------|-----------------| |------|-----------------| • Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | |-----------------------|--| | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers may burn. May emit poisonous fumes. | #### Personal precautions, protective equipment and emergency procedures # Minor Spills Control p - ▶ Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - ► Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite. - ► Wipe up. - Place in a suitable, labelled container for waste disposal. #### Moderate hazard. - ▶ Clear area of personnel and move upwind. - ▶ Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water course. - Stop leak if safe to do so. #### **Major Spills** - ▶ Contain spill with sand, earth or vermiculite. - ► Collect recoverable product into labelled containers for recycling. - Neutralise/decontaminate residue (see Section 13 for specific agent). - ▶ Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - ▶ After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - ▶ If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the MSDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - ▶ Prevent concentration in hollows and sumps. - ► DO NOT enter confined spaces until atmosphere has been checked. - ▶ DO NOT allow material to contact humans, exposed food or food utensils. - ▶ Avoid contact with incompatible materials. # Safe handling - ► When handling, **DO NOT** eat, drink or smoke. - ► Keep containers securely sealed when not in use. - ▶ Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ► Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ► Observe manufacturer's storage and handling recommendations contained within this MSDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained - ▶ DO NOT allow clothing wet with material to stay in contact with skin # Other information - ► Store in original containers. - ▶ Keep containers securely sealed. - ▶ Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS. #### Conditions for safe storage, including any incompatibilities # Suitable container - ► Polyethylene or polypropylene container. - ▶ Packing as recommended by manufacturer. - ► Check all containers are clearly labelled and free from leaks. # Storage incompatibility ► Avoid reaction with oxidising agents #### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION # **Control parameters** # OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA Not Available # EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |----------------------|---------------|---------------|---------------|---------------| | Nulon R45 Ultra Cool | Not Available | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | corrosion inhibitors
determined not to be
hazardous [Mfr] | Not Available | Not Available | | water | Not Available | Not Available | #### MATERIAL DATA Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can: - ▶ cause inflammation - cause increased susceptibility to other irritants and infectious agents - ▶ lead to permanent injury or dysfunction - permit greater absorption of hazardous substances and - ▶ acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure. #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |--|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Personal protection #### ▶ Safety glasses with side shields. Chemical goggles. ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Eve and face protection Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection See Hand protection below ▶ Wear chemical protective gloves, e.g. PVC. ▶ Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, chemical resistance of glove material. ▶ glove thickness and Hands/feet protection dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). ▶ When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. ▶ When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. ▶ Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. ▶ Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. **Body protection** See Other protection below Overalls. ▶ P.V.C. apron. Other protection ▶ Barrier cream. ▶ Skin cleansing cream. ▶ Eye wash unit. Thermal hazards Not Available # Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Nulon R45 Ultra Cool | Material | СРІ | |----------------|-----| | BUTYL | Α | | NEOPRENE | A | | VITON | A | | NATURAL RUBBER | С | | PVA | С | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Not Available Not Applicable #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties **Appearance** Dark green odourless liquid; miscible with water. | Physical state | Liquid | Relative density
(Water = 1) | 1.07-1.12 | |--|----------------|---|----------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | 0 approx | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 100 approx | Molecular weight
(g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension
(dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component
(%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | 7.5-9.5 (5%) | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # SECTION 10 STABILITY AND REACTIVITY | Reactivity | See section 7 | |--|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of
hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous
decomposition
products | See section 5 | # SECTION 11 TOXICOLOGICAL INFORMATION # Information on toxicological effects | Inhaled | Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Not normally a hazard due to non-volatile nature of product | |--------------|--| | Ingestion | The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. | | Skin Contact | Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. | | Eye | Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision | | | and/or other transient eye damage/ulceration ma | ay occur | | |-----------------------------------|---|-----------------------------|---| | Chronic | Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. | | | | | | | | | Nulon R45 Ultra Cool | TOXICITY | | | | Nulon K43 Oltra Cool | Not Available | Not Availab | le | | , | TOXICITY | IRRITATION | | | water | Oral (rat) LD50: >90000 mg/kg ^[2] | Not Availab | le | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's msds. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | | | | | | Nulon R45 Ultra Cool | The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. | | | | WATER | No significant acute toxicological data identifie | ed in literature search. | | | Acute Toxicity | 0 | Carcinogenicity | 0 | | Skin
Irritation/Corrosion | 0 | Reproductivity | 0 | | Serious Eye
Damage/Irritation | 0 | STOT - Single
Exposure | 0 | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | | | | Legend: ✓ – Data reg | uuired to make classification available | - 🗶 Data available but does not fill the criteria for classification # **SECTION 12 ECOLOGICAL INFORMATION** # **Toxicity** # NOT AVAILABLE | Ingredient | Endpoint | Test Duration | Effect | Value | Species | BCF | |---|---------------|---------------|---------------|---------------|---------------|---------------| | corrosion inhibitors
determined not to be
hazardous [Mfr] | Not Available | | water | Not Available | # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-------------------------|------------------| | water | LOW | LOW | # **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|----------------------| | water | LOW (LogKOW = -1.38) | # Mobility in soil | Ingredient | Mobility | |------------|------------------| | water | LOW (KOC = 14.3) | # **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods **Product / Packaging** Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - ► Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. #### disposal - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS #### **SECTION 15 REGULATORY INFORMATION** # Safety, health and environmental regulations / legislation specific for the substance or mixture # WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Y | | Canada - DSL | Y | | Canada - NDSL | N (water) | | China - IECSC | Y | | Europe - EINEC /
ELINCS / NLP | Y | | Japan - ENCS | N (water) | | Korea - KECI | Y | | New Zealand - NZIoC | Y | | Philippines - PICCS | Y | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 OTHER INFORMATION** #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: #### www.chemwatch.net The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.