Nulon E20 Performance Engine Treatment #### **Nulon Products** Chemwatch: 41238 Version No: 7.1.1.1 Safety Data Sheet according to WHS and ADG requirements # Chemwatch Hazard Alert Code: 1 Issue Date: 03/07/2014 Print Date: 08/04/2015 Initial Date: Not Available L.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Nulon E20 Performance Engine Treatment | |-------------------------------|--| | Synonyms | lubricant | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified | Use according to manufacturer's directions. | |---------------------|---| | uses | Lubricant. | # Details of the manufacturer/importer | Registered company name | Nulon Products | |-------------------------|--| | Address | 17 Yulong Close Moorebank 2170 NSW Australia | | Telephone | +61 2 9608 7800 | | Fax | +61 2 9601 4700 | | Website | Not Available | | Email | msds@nulon.com.au | ## **Emergency telephone number** | Association / Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | Not Available | | Other emergency telephone numbers | Not Available | #### **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code. #### CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|--------------------------| | Flammability | 1 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 0 | | 1 = Low | | Reactivity | 1 | | 2 = Moderate
3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | Not Applicable | |------------------------|---| | GHS Classification [1] | Acute Aquatic Hazard Category 3, Hazardous to the Ozone Layer Category 1 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | #### Label elements #### **GHS** label elements SIGNAL WORD WARNIN # Hazard statement(s) | H402 | Harmful to aquatic life | |------|---| | H420 | Harms public health and the environment by destroying ozone in the upper atmosphere | ## Precautionary statement(s) Prevention P273 Avoid release to the environment. # Precautionary statement(s) Response # Precautionary statement(s) Storage # Precautionary statement(s) Disposal | P501 | Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration | |------|--| | P502 | Refer to manufacturer/supplier for information on recovery/recycling | #### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|---| | Not avail. | 30-60 | mineral oil | | Not Available | NotSpec. | (solvent refined) | | Not Available | 30-60 | additives, unregulated | | 9002-84-0 | 1-10 | polytetrafluoroethylene | | Not Available | 1-10 | performance additives | | Not Available | 1 | dye | | Not Available | NotSpec. | NOTE: Manufacturer has supplied full ingredient | | Not Available | NotSpec. | information to allow CHEMWATCH assessment. | (solvent refined) NOTE: Manufacturer has supplied full ingredient information to allow CHEMWATCH assessment. ► If swallowed do **NOT** induce vomiting. The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. ## **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures Ingestion | Description of first aid measures | | | |-----------------------------------|---|--| | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. | | - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - ▶ Observe the patient carefully. - ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - ► Transport to hospital or doctor without delay. #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. - Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product - In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases. - High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement. NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes. #### **SECTION 5 FIREFIGHTING MEASURES** #### Extinguishing media - ▶ Water spray or fog. - Alcohol stable foam. - ▶ Dry chemical powder. - ▶ Carbon dioxide. # Special hazards arising from the substrate or mixture | Fire Incompatibility | |----------------------| |----------------------| Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may ## Advice for firefighters # Fire Fighting - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - ▶ Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraying water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. # Fire/Explosion Hazard - ▶ Slight fire hazard when exposed to heat or flame. - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). - ▶ May emit acrid smoke. - Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) hydrogen fluoride other pyrolysis products typical of burning organic materialMay emit poisonous fumes. May emit corrosive fumes. #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## Personal precautions, protective equipment and emergency procedures Environmental hazard - contain spillage. ## Slippery when spilt. - Remove all ignition sources. - ▶ Clean up all spills immediately. # Minor Spills - Avoid breathing vapours and contact with skin and eyes. - ▶ Control personal contact with the substance, by using protective equipment. - · Contain and absorb spill with sand, earth, inert material or vermiculite. - Wine up. - ▶ Place in a suitable, labelled container for waste disposal. ## Slippery when spilt. #### Moderate hazard ▶ Clear area of personnel and move upwind. Environmental hazard - contain spillage. - ▶ Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. # **Major Spills** - ▶ Prevent, by any means available, spillage from entering drains or water course. - ▶ No smoking, naked lights or ignition sources. - ► Increase ventilation - ▶ Stop leak if safe to do so. - ▶ Contain spill with sand, earth or vermiculite. - ▶ Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - ► Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the MSDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling Safe handling - ► Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - ▶ Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - ▶ Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - ▶ Avoid physical damage to containers. - ▶ Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. - ▶ Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin # Other information - ▶ Store in original containers. - ▶ Keep containers securely sealed. - ▶ No smoking, naked lights or ignition sources. - ▶ Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS. #### Conditions for safe storage, including any incompatibilities | Suitable container | ► DO NOT use aluminium or galvanised containers | |-------------------------|---| | Storage incompatibility | For polytetrafluoroethylene (PTFE) and other related polyfluorinated polymers: Avoid storage with strong oxidising agents, tetrafluoroethylene, hexafluoroethylene, perfluoroisobutylene, carbonyl fluoride and hydrogen fluoride. | ## SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION #### **Control parameters** # OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|-------------|---------------------------|---------|---------------|---------------|---------------| | Australia Exposure
Standards | mineral oil | Oil mist, refined mineral | 5 mg/m3 | Not Available | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-------------------------|-----------------------------------|-----------|-----------|----------| | polytetrafluoroethylene | Polytetrafluoroethylene; (Teflon) | 0.3 mg/m3 | 3.3 mg/m3 | 20 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | mineral oil | Not Available | Not Available | | (solvent refined) | Not Available | Not Available | | additives, unregulated | Not Available | Not Available | | polytetrafluoroethylene | Not Available | Not Available | | performance additives | Not Available | Not Available | | dye | Not Available | Not Available | | NOTE: Manufacturer
has supplied full
ingredient | Not Available | Not Available | | information to allow CHEMWATCH assessment. | Not Available | Not Available | Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded. Odour Safety Factor (OSF) is determined to fall into either Class C, D or E. The Odour Safety Factor (OSF) is defined as: OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm Classification into classes follows: ClassOSF Description - A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities - B 26-550As "A" for 50-90% of persons being distracted - C 1-26 As "A" for less than 50% of persons being distracted - D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached - E <0.18 As "D" for less than 10% of persons aware of being tested Odour Safety Factor(OSF) OSF=0.001 (polytetrafluoroethylene) #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## Personal protection #### reisoliai protectioi ► Safety glasses with side shields. ▶ Chemical goggles. - Eye and face protection - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should | | ▶ include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] | |-----------------------|---| | Skin protection | See Hand protection below | | Hands/feet protection | ▶ Wear chemical protective gloves, e.g. PVC.▶ Wear safety footwear or safety gumboots, e.g. Rubber | | Body protection | See Other protection below | | Other protection | Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit. | | Thermal hazards | Not Available | #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: ## "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Nulon E20 Performance Engine Treatment Not Available | Material | CPI | |----------|-----| | | ~ | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ## Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required
Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |--|-------------------------|-------------------------|---------------------------| | up to 10 x ES | A-AUS | - | A-PAPR-AUS /
Class 1 | | up to 50 x ES | - | A-AUS / Class
1 | - | | up to 100 x ES | - | A-2 | A-PAPR-2 ^ | ## ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** # Information on basic physical and chemical properties | Appearance | Opaque viscous liquid; not miscible with water. | | | |--|---|---|----------------| | | | | | | Physical state | Liquid | Relative density
(Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight
(g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension
(dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component
(%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | |---------------------------|---------------|-----------------------|----------------| | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |--|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of
hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous
decomposition
products | See section 5 | | SECTION 11 TOXICOLOGICAL INFORMATION | | | | | | |--------------------------------------|--|--|--|--|--| | Information on toxico | Information on toxicological effects | | | | | | Inhaled | Limited evidence exists that exposure to the material may produce irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by inhalation. Fumes from burning PTFE-containing materials are irritating to the upper respiratory tract and may be harmful if exposure is prolonged. When heated for a long time a very small amount of hydrogen fluoride, carbonyl fluoride and perfluoroisobutylene is generated. The higher the temperature the greater is the decomposition rate. Symptoms of exposure to hydrogen fluoride and carbonyl fluoride include burning sensation, cough, dizziness, headache, labored breathing, nausea, shortness of breathe, sore throat and vomiting. Symptoms may be delayed. These substances are corrosive to the eyes, skin and respiratory tract. Inhalation may produce lung oedema. Prolonged exposures may produce hypocalcaemia High exposures may be fatal. Medical observation is indicated in the event of such exposures. Symptoms of exposure to perfluoroisobutylene include cough, shortness of breathe, sore throat. Symptoms may be delayed. Symptoms of lung oedema often do not manifest until a few hours have passed and may be aggravated by physical effort. Rest and medical observation are essential. Immediate administration of an appropriate spray, or by the doctor authorised by him/ her, should be considered. Overheated or burnt PTFE evolves highly irritating and corrosive hydrogen fluoride gas with small amounts of highly toxic carbonyl fluoride. Polymer decomposition starts at 400 deg. C. with rapid degradation at 540 deg. C Decomposition products are complex. Solutions of hydrogen fluoride gas in mucous fluids form highly corrosive hydrofluoric acid so that inhalation of decomposition products can cause symptoms of choking, coughing and severe eye, nose and throat irritation. After a symptomless period of 1-2 days, exposed individuals may experience a set of symptoms described as "polymer fume fever"; this is a temporary flu-like illness with fever, chill | | | | | | Ingestion | Limited evidence exists that exposure to the material may produce irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by swallowing. | | | | | | Skin Contact | Limited evidence exists that exposure to the material may produce irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by skin contact. | | | | | | Еуе | Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | | | | | Chronic | Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Principal route of exposure is by skin contact; lesser exposures include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with mineral oils carries with it the risk of skin conditions such as oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the sole of the foot (plantar warts). With highly refined mineral oils no appreciable systemic effects appear to result through skin absorption. Exposure to oil mists frequently elicits respiratory conditions, such as asthma; the provoking agent is probably an additive. High oil mist concentrations may produce lipoid pneumonia although clinical evidence is equivocal. In animals exposed to | | | | | concentrations of 100 mg/m3 oil mist, for periods of 12 to 26 months, the activity of lung and serum alkaline phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce this response. These enzyme changes are sensitive early indicators of lung damage. Workers exposed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of slight basal lung fibrosis. | Nulon E20 | TOXICITY | IRRITATION | | |---------------------------------|--|-------------------------------|--| | Performance Engine
Treatment | Not Available | Not Available | | | mineral oil | TOXICITY | IRRITATION | | | | Not Available | Not Available | | | polytetrafluoroethylene | TOXICITY | IRRITATION | | | | Oral (rat) LD50: 1250 mg/kg*] ^[2] | Nil reported * [Manufacturer] | | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's msds. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | ## MINERAL OIL Toxicity and Irritation data for petroleum-based mineral oils are related to chemical components and vary as does the composition and source of the original crude. A small but definite risk of occupational skin cancer occurs in workers exposed to persistent skin contamination by oils over a period of years. This risk has been attributed to the presence of certain polycyclic aromatic hydrocarbons (PAH) (typified by benz[a]pyrene). Petroleum oils which are solvent refined/extracted or severely hydrotreated, contain very low concentrations of both. #### For perfluorinated carbons (PFCs): PFCs are inert fluids composed of a complex combination of organic compounds resulting from the distillation of electrochemically fluorinated (ECF) compounds. This class consists of branched, linear and cyclic perfluorinated hydrocarbons having carbon numbers predominantly in the range of C5-Cl8 and boiling in the range of approximately 25 C-255 C (77 F-491 F). Perfluorinated amine and ether compounds may also be present Acute oral and inhalation toxicity tests with perfluoroalkanes show no toxicity at any dose tested, and even extremely high-dose intraperitoneal injection resulted in no lethality. In contrast, perfluoroalkenes (such as octafluorocyclopentene, perfluoroisobutylene, hexafluoropropene) have shown evidence of inhalation toxicity, in some cases, extreme. PFCs are among the least toxic of all known organic chemicals. PFCs don't oxidise or hydrolyse. They have no functional reactive groups. PFCs owe their low toxicity to the combination of the following properties: - ▶ Chemical inertness - ► Low solubility in biological media (blood, cell membranes, etc.) - ▶ High volatility - Resistance to biological activation (reductive and oxidative metabolism) Because PFCs are chemically inert, if inhaled and absorbed they do not react chemically with any biological molecules; they simply partition between blood and various organs and tissues. As PFCs have limited ability to dissolve in biological media, they do not reach appreciable concentrations in the tissues of air-exposed animals. As PFCs are highly volatile chemicals and have high air-blood partition coefficients, any fluorochemical remaining after exposure will be rapidly eliminated in the breath. Consequently, all such PFCs have: - Very high rodent LC50s (very low acute toxicity) - Very high cardiac sensitisation EC50s (very low toxicity) In fact, most PFCs do not induce narcosis (sleep) or cardiac sensitisation at maximum achievable concentration (saturation). Inhalation exposure at levels up to 50,000 ppm for thirteen weeks produced no effects in rats, nor did oral exposure for thirty days at 2,000 mg/kg/day. All PFCs that have undergone evaluation by the ACGIH or WEEL committees in the US have been granted an exposure guideline of 1000 ppm (8-hr TWA). NASA has evaluated the toxicity information associated with PFCs including those that can be used as heat transfer agents and fire extinguishing agents in spacecraft and has established a Space Maximum Allowable Concentration (SMAC) of 11,000 ppm for up to 180 days (24 hours/day) PFCs are neutral molecules and because they are maximally fluorinated, they cannot undergo biological oxidation-reduction reactions to form reactive aldehydes, acid fluorides, radicals or acids that have been associated with several types of toxicity. **Genetic toxicity:** As PFCs are not reactive directly with biological tissue and PFCs cannot form reactive metabolites, these fluorochemicals have tested negative in bacterial mutagenicity assays. Ames testing showed no genotoxicity. Hydrofluoroethers and hydrofluoropolyethers are highly fluorinated ethers having properties intermediate between the perfluoroethers and hydrocarbon ethers. They are low in toxicity, nonflammable, with densities of 1.4-1.7 g/cm3, surface tensions of 13-16 dyn/cm and low kinematic viscosity. The hydrofluoropolyethers are used as heat-transfer fluids. The hydrofluoroethers are used as heat-transfer fluids as well as precision cleaning solvents and solvents for specialty applications such as coating deposition. Perfluorinated compounds are potent peroxisome proliferators and were found to induce 8-hydroxydeoxyguanosine in the liver of treated rats. The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited, cytoplasmic #### **POLYTETRAFLUOROETHYLENE** organelles that are found in the cells of animals, plants, fungi and protozoa. Peroxisome proliferators include certain hypolipidaemic drugs, phthalate ester plasticisers, industrial solvents, herbicides, food flavours, leukotriene D4 antagonists and hormones. Numerous studies in rats and mice have demonstrated the hepatocarcinogenic effects of peroxisome proliferators, and these compounds have been unequivocally established as carcinogens. However it is generally conceded that compounds inducing proliferation in rats and mice have little, if any, effect on human liver except at very high doses or extreme conditions of exposure. The substance is classified by IARC as Group 3: **NOT** classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|---|-----------------------------|---| | Skin
Irritation/Corrosion | 0 | Reproductivity | 0 | | Serious Eye
Damage/Irritation | 0 | STOT - Single
Exposure | 0 | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: → – Data required to make classification available ★ - Data available but does not fill the criteria for classification ○ – Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** ## **Toxicity** #### NOT AVAILABLE | Ingredient | Endpoint | Test Duration | Effect | Value | Species | BCF | |---|---------------|---------------|---------------|---------------|---------------|---------------| | mineral oil | Not Available | | (solvent refined) | Not Available | | additives, unregulated | Not Available | | polytetrafluoroethylene | Not Available | | performance additives | Not Available | | dye | Not Available | | NOTE: Manufacturer
has supplied full
ingredient | Not Available | | information to allow CHEMWATCH assessment. | Not Available | Harmful to aquatic organisms. Dangerous for the ozone layer. On the basis of the available evidence concerning properties and predicted or observed environmental fate and behavior, the material may present a danger to the structure and/ or functioning of the stratospheric ozone layer. **DO NOT** discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------------------|-------------------------|------------------| | polytetrafluoroethylene | HIGH | HIGH | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |-------------------------|-----------------------| | polytetrafluoroethylene | LOW (LogKOW = 1.2142) | # Mobility in soil | Ingredient | Mobility | |-------------------------|-------------------| | polytetrafluoroethylene | LOW (KOC = 106.8) | ## **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods Product / Packaging disposal - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ► Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. • Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** | <u> </u> | | |------------------|----------------| | Marine Pollutant | NO | | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS ## **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### MINERAL OIL(NOT AVAIL.) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Substances Information System - Consolidated Lists International Agency for F by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified #### POLYTETRAFLUOROETHYLENE(9002-84-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs | National Inventory | Status | |----------------------------------|---| | Australia - AICS | N (mineral oil) | | Canada - DSL | N (mineral oil) | | Canada - NDSL | N (polytetrafluoroethylene; mineral oil) | | China - IECSC | N (mineral oil) | | Europe - EINEC /
ELINCS / NLP | N (polytetrafluoroethylene; mineral oil) | | Japan - ENCS | N (mineral oil) | | Korea - KECI | N (mineral oil) | | New Zealand - NZIoC | N (mineral oil) | | Philippines - PICCS | N (mineral oil) | | USA - TSCA | N (mineral oil) | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 OTHER INFORMATION** # Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.